Computing in Particle Physics

ICTP HPC Appointment 30 October 2012

What are the fundamental building blocks of Nature?

Force carriers

CERN Accelerator Complex

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

4μ candidate with $m_{4\mu}$ = 125.1 GeV

 p_T (muons)= 36.1, 47.5, 26.4, 71 .7GeV m_{12} = 86.3 GeV, m_{34} = 31.6 GeV 15 reconstructed vertices

4e candidate with m_{4e} = 124.6 GeV

 p_T (electrons)= 24.9, 53.9, 61.9, 17.8 GeV m_{12} = 70.6 GeV, m_{34} = 44.7 GeV 12 reconstructed vertices

Theory

Experiment

Theory

Experiment

~100 million readout channels, every 25 ns

After zeroes removed, 1.6 MB / event

After zeroes removed, 1.6 MB / event * 40 M events / s = 64 TB / s?

After zeroes removed, 1.6 MB / event
* 40 M events / s = 64 TB / s?

Can't save everything

	Incoming event rate per second	Outgoing event rate per second	Reduction factor
Level 1	40 000 000	100 000	400
Level 2	100 000	3 000	30
Level 3	3 000	200	15

	Incoming event rate per second	Outgoing event rate per second	Reduction factor
Level 1	40 000 000	100 000	400
Level 2	100 000	3 000	30
Level 3	3 000	200	15

200 events / s * 1.6 MB / event = 320 MB / s

	Incoming event rate per second	Outgoing event rate per second	Reduction factor
Level 1	40 000 000	100 000	400
Level 2	100 000	3 000	30
Level 3	3 000	200	15

200 events / s * 1.6 MB / event = 320 MB / s

= ~ 3200 TB / year raw data

	Incoming event rate per second	Outgoing event rate per second	Reduction factor
Level 1	40 000 000	100 000	400
Level 2	100 000	3 000	30
Level 3	3 000	200	15

200 events / s * 1.6 MB / event = 320 MB / s

= ~ 3200 TB / year raw data

Analysis is done offline, ~3000 collaboration members should have equal access to data worldwide

Ζ/γ* \sqrt{s} = 7 TeV, L = 5.05 fb⁻¹; \sqrt{s} = 8 TeV, L = 5.26 fb⁻¹ L+2012 — Data 0 7 TeV 4e, 4μ, 2e2μ 8 TeV 4e, 4μ, 2e2μ Z+X Events Zγ*,ZZ m_H=126 GeV ±1.01 160 180 m_{4l} [GeV] 80 100 120 140 160

Need to get theory predictions.

Monte Carlo event generators

Nature

Theory model

Event generator

Detector

Trigger

Reconstructed events

Simulated events

Analysis

Event generator

Matrix element

Parton shower

Hadronization

Decays

Event generator

Matrix element

Monte-Carlo integration

Parton shower

Markov chain

Hadronization

book-keeping

Decays

Monte-Carlo integration

Simulated data sets of millions of events

Nature

Theory model

Event generator

Detector

Trigger

Reconstructed events

Simulated events

Analysis

Nature

Theory model

Event generator

Detector

Trigger

Reconstructed events

Simulated events

need millions! ~15 s per event

Analysis

Each event independent

Batch farms are OK, but typical university clusters not large enough

Connect all participants transparently:

Worldwide LHC Computing Grid

Main ideas

- Hardware infrastructure supported by "Middleware"
- Allow heterogenous collections of machines to be connected
- End users should not care where data is.
 Describe job, and "Resource Broker" will find the best location

Reality

- · uniform OS installation needed
- RB bottleneck
- Pilot jobs
- asymmetry between experiments' requirements and WLCG middleware development resources
- Middleware lacks central planning

Would do it differently next time, but this is what we've got

Pragmatic approach seems to work sufficiently well for the experiments, problems worked around with lot of effort

Better Monte Carlo tuning

New kinds of theory studies possible

4e candidate with m_{4e} = 124.6 GeV

 p_{T} (electrons)= 24.9, 53.9, 61.9, 17.8 GeV m_{12} = 70.6 GeV, m_{34} = 44.7 GeV 12 reconstructed vertices

World Wide Web

The WorldWideWeb (W3) is a wide-area <u>hypermedia</u> information retrieval initiative aiming to give universal access to a large universe of documents.

Everything there is online about W3 is linked directly or indirectly to this document, including an executive summary of the project, Mailing lists, Policy, November's W3 news. Frequently Asked Questions

What's out there?

Pointers to the world's online information, subjects, W3 servers, etc.

Help

on the browser you are using

Software Products

A list of W3 project components and their current state. (e.g. Line Mode, X11 Vsola, NeXTStep., Servers., Tools., Mail robot., Library.)

Technical

Details of protocols, formats, program internals etc

Bibbography

Paper documentation on W3 and references.

People

A list of some people involved in the project.

History

A summary of the history of the project

How can I help ?

If you would like to support the web.

Getting code

Getting the code by anonymous FTP, etc.