
Introduction toIntroduction to
High-Performance ComputingHigh-Performance Computing

Dr. Axel Kohlmeyer

Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

http://sites.google.com/site/akohlmey/


2HPC Introduction

Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be 
solved numerically, i.e. by inserting numbers 
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary 
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known 
experimental results, the better its predictions
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What is High-Performance 
Computing (HPC)?

● Definition depends on individual person
> HPC is when I care how fast I get an answer

● Thus HPC can happen on:
● A workstation, desktop, laptop, smartphone!
● A supercomputer
● A Linux/MacOS/Windows/... cluster
● A grid or a cloud 
● Cyberinfrastructure = any combination of the above

● HPC also means High-Productivity Computing
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Parallel Workstation

● Most computers today are parallel workstations
=> multi-core processors

● Running Linux OS (or MacOS X) allows 
programming like traditional Unix workstation

● All processors have access to all memory
● Uniform memory access (UMA):

 1 memory pool for all, same speed for all
● Non-uniform memory access (NUMA): 

multiple pools, speed depends on “distance” 
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An HPC Cluster is...

● A cluster needs:
● Several computers, nodes, often in special cases 

for easy mounting in a rack
● One or more networks (interconnects) to 

hook the nodes together
● Software that allows the nodes to communicate

with each other (e.g. MPI)
● Software that reserves resources to individual users

● A cluster is: all of those components working 
together to form one big computer
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What is Grid Computing?

● Loosely coupled network of compute resources
● Needs a “middleware” for transparent access to 

inhomogeneous resources, find matching ones
● Modeled after power grid

=> share resources not needed right now
● Run a global authentication framework

=> Globus, Unicore, Condor, Boinc
● Run an application specific client

=> SETI@home, Folding@home

mailto:SETI@home
mailto:Folding@home
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What is Cloud Computing?

● Simplified: “Grid computing made easy”
● Grid: use “job description” to match calculation 

request to a suitable available host, use 
“distinguished name” to uniquely identify users, 
opportunistic resource management

● Cloud: provide virtual server instance on shared 
resource as needed with custom OS image, 
commercialization (cloud service providers, 
dedicated or spare server resources), physical 
location flexible, web frontend
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What is Supercomputing (SC)?

● The most visible manifestation of HPC
● Programs run on the fastest and largest 

computers in the world (=> Top500 List)
● Desktop vs. Supercomputer in 2012 (peak):

● Desktop processor (1 core): ~10 GigaFLOP/s
● Tesla C2050 GPU (448 cores): >500 GigaFLOP/s
● “K” supercomputer: >10 PetaFLOP/s

● Sustained vs. peak: “K” 93%, “Jaguar” 75%, 
“Nebulae” 43%, “Roadrunner” 76%, BG/P, 82% 
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Why would HPC matter to you?

● Scientific computing is becoming more 
important in many research disciplines

● Problems become more complex, need teams 
of researchers with diverse expertise

● Scientific (HPC) application development 
limited often limited by lack of training

● More knowledge about HPC leads to more 
effective use of HPC resources and better 
interactions with (computational) colleagues
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Research Disciplines in HPC

Molecular 
Biosciences

31%

Chemistry
17%

Physics
17%

Astronomical 
Sciences
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Materials Research
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Earth Sciences
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All 19 Others
4%

Advanced Scientific 
Computing

2%

Atmospheric 
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3%

Chemical, Thermal 
Systems
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Some Examples...

● Simulation of physical phenomena:
● Climate modeling
● Galaxy formation

● Data mining
● Gene sequencing
● Detecting potential Tornados

● Visualization
● Reducing large data sets into

pictures a scientist understands

Moore, OK
Tornadic

Storm
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Why Would I Need HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel
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HPC vs. Computer Science

● Most people in HPC are no computer scientists
● Software has to be correct first and (then) 

efficient; packages can be over 30 years “old”
● Technology is a mix of “high-end” & “stone age”

(Extreme hardware, MPI, Fortran, C/C++) 
● So what skills do I need to for HPC:

● Common sense, cross-discipline perspective
● Good understanding of calculus and (some) physics
● Patience and creativity, ability to deal with “jargon”
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HPC is a Pragmatic Discipline

● Raw performance is not always what matters:
how long does it take me to get an answer?

● HPC is more like a craft than a science:
=> practical experience is most important
=> leveraging existing solutions is preferred
     over inventing new ones requiring rewrites
=> a good solution today is worth more than
     a better solution tomorrow
=> a readable and maintainable solution
     is better than a complicated one
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How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade convenience for performance
      (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)
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What Determines Performance?

● How fast is my CPU?
● How fast can I move data around?
● How well can I split work into pieces?

Very application specific:
=> never assume that a good solution for one
     problem is as good a solution for another
=> always run benchmarks to understand
     requirements of your applications and
     properties of your hardware
=> respect Amdahl's law 
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A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with 
shifts until 
register 2 is 0 

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit
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A Simple CPU

● The basic CPU design is not much different 
from the mechanical calculator.

● Data still needs to be fetched into registers 
for the CPU to be able to operate on it.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…
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A Typical Computer
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Running Faster v1: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but RAM is cheap
and there can be a lot of it

● Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external
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Running Faster v2: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop
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Running Faster v3: Superscalar

● Superscalar CPU => instruction level parallelism
● Some redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling
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Running Faster v4: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting
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How Do We Measure Performance?

● For numerical operations: FLOP/s
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition 
and/or multiplications completed per clock
=> 2.5 Ghz x 4 FLOP/clock = 10 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)
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Fast and Slow Operations

● Fast (6): add, subtract, multiply
● Medium (40): divide, modulus, sqrt()
● Slow (300): most transcendental functions
● Very slow (1000): power (xy for real x and y)

Often only the fastest operations are pipelined, 
so code will be the fastest when using only add 
and multiply => linear algebra 
=> BLAS (= Basic Linear Algebra Subroutines)
     plus LAPACK (Linear Algebra Package)
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Software Optimization 

● Writing maximally efficient code is hard:
=> most of the time it will not be executed 
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers, 
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and 
can do the dirty work for us, but can get fooled

=> modular programming: generic code for 
most of the work plus well optimized kernels
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Tips For Efficient Software
● Write “compiler-friendly” code:

● Use algorithms with mostly “fast” operations
● Break down long statements into smaller ones

-> the compiler will have to do it as well, 
    but you know much better what you want
-> small statements have less dependencies
    => better for superscaler/pipelined CPUs

● Use loops, but
– Avoid “if” statements, complex loop bodies, function calls

● Try to access data in forward order, not random

● Use kernels in optimized (performance) libraries
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A High-Performance Problem
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Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects
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Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by 
the sequential fraction of the program.

● This assumes perfect scaling and no overhead
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Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with 
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more 
efficient with more memory => 50-90% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial 
overhead => < 5% peak  (similar for MD)
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Strong Scaling Graph
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Weak Scaling Graph
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Performance within an Application
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Multi-core MPI Performance 
vs. MPI+OpenMP
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Parallel Efficiency vs. Physics
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A Real Life HPC Problem

● C code to study relations in social networks
● Two steps: 

1) construct a large matrix with yes/no 
information (1 or 0)
2) process matrix by pruning lines and inserting 
corresponding entries into a second matrix

● Input parameters for block sizes (relation depth)
● 80% of time in one (small) subroutine
● Program too slow and needs too much RAM
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What To Do

● Profiling to confirm performance info
(true, except for very large blocks, then a 
different step becomes dominant)

● Since only 1/0 information is stored, replace 
“unsigned long” (64-bit) with “char” (8-bit)

● Add OpenMP multi-threading, since critical 
subroutine has loops that are suitable

● Test on different hardware to determine 
sensitivity to CPU vs. memory performance
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