
Introduction toIntroduction to
High-Performance ComputingHigh-Performance Computing

Dr. Axel Kohlmeyer

Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

http://sites.google.com/site/akohlmey/

2HPC Introduction

Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be
solved numerically, i.e. by inserting numbers
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known
experimental results, the better its predictions

3HPC Introduction

What is High-Performance
Computing (HPC)?

● Definition depends on individual person
> HPC is when I care how fast I get an answer

● Thus HPC can happen on:
● A workstation, desktop, laptop, smartphone!
● A supercomputer
● A Linux/MacOS/Windows/... cluster
● A grid or a cloud
● Cyberinfrastructure = any combination of the above

● HPC also means High-Productivity Computing

4HPC Introduction

Parallel Workstation

● Most computers today are parallel workstations
=> multi-core processors

● Running Linux OS (or MacOS X) allows
programming like traditional Unix workstation

● All processors have access to all memory
● Uniform memory access (UMA):

 1 memory pool for all, same speed for all
● Non-uniform memory access (NUMA):

multiple pools, speed depends on “distance”

5HPC Introduction

An HPC Cluster is...

● A cluster needs:
● Several computers, nodes, often in special cases

for easy mounting in a rack
● One or more networks (interconnects) to

hook the nodes together
● Software that allows the nodes to communicate

with each other (e.g. MPI)
● Software that reserves resources to individual users

● A cluster is: all of those components working
together to form one big computer

6HPC Introduction

What is Grid Computing?

● Loosely coupled network of compute resources
● Needs a “middleware” for transparent access to

inhomogeneous resources, find matching ones
● Modeled after power grid

=> share resources not needed right now
● Run a global authentication framework

=> Globus, Unicore, Condor, Boinc
● Run an application specific client

=> SETI@home, Folding@home

mailto:SETI@home
mailto:Folding@home

7HPC Introduction

What is Cloud Computing?

● Simplified: “Grid computing made easy”
● Grid: use “job description” to match calculation

request to a suitable available host, use
“distinguished name” to uniquely identify users,
opportunistic resource management

● Cloud: provide virtual server instance on shared
resource as needed with custom OS image,
commercialization (cloud service providers,
dedicated or spare server resources), physical
location flexible, web frontend

8HPC Introduction

What is Supercomputing (SC)?

● The most visible manifestation of HPC
● Programs run on the fastest and largest

computers in the world (=> Top500 List)
● Desktop vs. Supercomputer in 2012 (peak):

● Desktop processor (1 core): ~10 GigaFLOP/s
● Tesla C2050 GPU (448 cores): >500 GigaFLOP/s
● “K” supercomputer: >10 PetaFLOP/s

● Sustained vs. peak: “K” 93%, “Jaguar” 75%,
“Nebulae” 43%, “Roadrunner” 76%, BG/P, 82%

9HPC Introduction

Why would HPC matter to you?

● Scientific computing is becoming more
important in many research disciplines

● Problems become more complex, need teams
of researchers with diverse expertise

● Scientific (HPC) application development
limited often limited by lack of training

● More knowledge about HPC leads to more
effective use of HPC resources and better
interactions with (computational) colleagues

10HPC Introduction

Research Disciplines in HPC

Molecular
Biosciences

31%

Chemistry
17%

Physics
17%

Astronomical
Sciences

12%

Materials Research
6%

Earth Sciences
3%

All 19 Others
4%

Advanced Scientific
Computing

2%

Atmospheric
Sciences

3%

Chemical, Thermal
Systems

5%

11HPC Introduction

Some Examples...

● Simulation of physical phenomena:
● Climate modeling
● Galaxy formation

● Data mining
● Gene sequencing
● Detecting potential Tornados

● Visualization
● Reducing large data sets into

pictures a scientist understands

Moore, OK
Tornadic

Storm

12HPC Introduction

Why Would I Need HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel

13HPC Introduction

HPC vs. Computer Science

● Most people in HPC are no computer scientists
● Software has to be correct first and (then)

efficient; packages can be over 30 years “old”
● Technology is a mix of “high-end” & “stone age”

(Extreme hardware, MPI, Fortran, C/C++)
● So what skills do I need to for HPC:

● Common sense, cross-discipline perspective
● Good understanding of calculus and (some) physics
● Patience and creativity, ability to deal with “jargon”

14HPC Introduction

HPC is a Pragmatic Discipline

● Raw performance is not always what matters:
how long does it take me to get an answer?

● HPC is more like a craft than a science:
=> practical experience is most important
=> leveraging existing solutions is preferred
 over inventing new ones requiring rewrites
=> a good solution today is worth more than
 a better solution tomorrow
=> a readable and maintainable solution
 is better than a complicated one

15HPC Introduction

How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade convenience for performance
 (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)

16HPC Introduction

What Determines Performance?

● How fast is my CPU?
● How fast can I move data around?
● How well can I split work into pieces?

Very application specific:
=> never assume that a good solution for one
 problem is as good a solution for another
=> always run benchmarks to understand
 requirements of your applications and
 properties of your hardware
=> respect Amdahl's law

17

A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with
shifts until
register 2 is 0

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit

18

A Simple CPU

● The basic CPU design is not much different
from the mechanical calculator.

● Data still needs to be fetched into registers
for the CPU to be able to operate on it.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

19

A Typical Computer

CPU
Memory

Controller

Bus
Controller

R
A

M

R
A

M

R
A

M

R
A

M

N
et

w
o r

k

U
S

BGraphics
Processor SA

T
A

Mass
Storage

PeripheralsDisplay

20

Running Faster v1: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but RAM is cheap
and there can be a lot of it

● Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external

21

Running Faster v2: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop

22

Running Faster v3: Superscalar

● Superscalar CPU => instruction level parallelism
● Some redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling

23

Running Faster v4: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting

24HPC Introduction

How Do We Measure Performance?

● For numerical operations: FLOP/s
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition
and/or multiplications completed per clock
=> 2.5 Ghz x 4 FLOP/clock = 10 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)

25HPC Introduction

Fast and Slow Operations

● Fast (6): add, subtract, multiply
● Medium (40): divide, modulus, sqrt()
● Slow (300): most transcendental functions
● Very slow (1000): power (xy for real x and y)

Often only the fastest operations are pipelined,
so code will be the fastest when using only add
and multiply => linear algebra
=> BLAS (= Basic Linear Algebra Subroutines)
 plus LAPACK (Linear Algebra Package)

26HPC Introduction

Software Optimization

● Writing maximally efficient code is hard:
=> most of the time it will not be executed
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers,
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and
can do the dirty work for us, but can get fooled

=> modular programming: generic code for
most of the work plus well optimized kernels

27HPC Introduction

Tips For Efficient Software
● Write “compiler-friendly” code:

● Use algorithms with mostly “fast” operations
● Break down long statements into smaller ones

-> the compiler will have to do it as well,
 but you know much better what you want
-> small statements have less dependencies
 => better for superscaler/pipelined CPUs

● Use loops, but
– Avoid “if” statements, complex loop bodies, function calls

● Try to access data in forward order, not random

● Use kernels in optimized (performance) libraries

28HPC Introduction

A High-Performance Problem

29HPC Introduction

Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects

30HPC Introduction

Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by
the sequential fraction of the program.

● This assumes perfect scaling and no overhead

32 64 128 256 512 1024 2048 4096

0%

25%

50%

75%

100%

1 Vesicle CG-System, 2 MPI / 6 OpenMP (SP)

Other
I/O
Comm
Neighbor
Ks pace
Bond
Pa ir

of Nodes

P
e

rc
e

n
ta

g
e

 o
f

T
i m

e

31HPC Introduction

Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more
efficient with more memory => 50-90% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial
overhead => < 5% peak (similar for MD)

32HPC Introduction

Strong Scaling Graph

220 470 1006 2150 4596

0.1

0.15

0.24

0.39

0.61

8 Vesicles CG-System / 30,902,832 CG-Beads

12 MPI / 1 OpenMP
6 MPI / 2 OpenMP
4 MPI / 3 OpenMP
2 MPI / 6 OpenMP
2 MPI / 6 OpenMP (SP)

Nodes

T
im

e
 p

e
r

M
D

 S
te

p
(s

e
c)

33HPC Introduction

Weak Scaling Graph

512 1024 2048 4096

0.05

0.1

0.15

0.2

Weak Scaling: 7,544 CG-Beads/Node

12 MPI / 1 OpenMP
6 MPI / 2 OpenMP
4 MPI / 3 OpenMP
2 MPI / 6 OpenMP
2 MPI / 6 OpenMP (SP)

Nodes

T
im

e
 p

e
r

M
D

-S
te

p
 (

se
c)

34HPC Introduction

Performance within an Application

128 256 384 768 128 256 384 768 768

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 64 Nodes, Cray XT5

Other
Neighbor
Comm
Kspace
Bond
Pair

PE

T
im

e
in

 s
ec

on
ds

35HPC Introduction

Multi-core MPI Performance
vs. MPI+OpenMP

1024 2048 3072 6144 1024 2048 3072 6144 6144

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 512 Nodes, Cray XT5

Other
Neighbor
Comm
Ks pa ce
Bond
Pa ir

PE

T
im

e
 i

n
 s

e
co

n
d

s

36HPC Introduction

Parallel Efficiency vs. Physics

37HPC Introduction

A Real Life HPC Problem

● C code to study relations in social networks
● Two steps:

1) construct a large matrix with yes/no
information (1 or 0)
2) process matrix by pruning lines and inserting
corresponding entries into a second matrix

● Input parameters for block sizes (relation depth)
● 80% of time in one (small) subroutine
● Program too slow and needs too much RAM

38HPC Introduction

What To Do

● Profiling to confirm performance info
(true, except for very large blocks, then a
different step becomes dominant)

● Since only 1/0 information is stored, replace
“unsigned long” (64-bit) with “char” (8-bit)

● Add OpenMP multi-threading, since critical
subroutine has loops that are suitable

● Test on different hardware to determine
sensitivity to CPU vs. memory performance

39HPC Introduction

Introduction toIntroduction to
High-Performance ComputingHigh-Performance Computing

Dr. Axel Kohlmeyer

Scientific Computing Expert

Information and Telecommunication Section
The Abdus Salam International Centre

for Theoretical Physics

http://sites.google.com/site/akohlmey/

akohlmey@ictp.it

http://sites.google.com/site/akohlmey/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

